论文标题
图形的基本类固醇
Fundamental Groupoids for Graphs
论文作者
论文摘要
在本文中,我们为图形开发了一个$ \ times $ - homotopy的基本群体,并显示了与2类图的功能关系。我们进一步探索了图形产品的基本类固醇,并开发了尊重图形产品的群体素化产品。提供了针对这些群体的范坎普定理。最后,我们将以前的工作推广到用于图形的基本组,开发一个循环行走群体,并显示与图形形态的多面体复合物的联系。
In this paper, we develop a $\times$-homotopy fundamental groupoid for graphs, and show a functorial relationship to the 2-category of graphs. We further explore the fundamental groupoid of graph products and develop a groupoid product which respects the graph product. A van Kampen Theorem for these groupoids is provided. Finally, we generalize previous work on a fundamental group for graphs, developing a looped walk groupoid and showing a connection to the polyhedral complex of graph morphisms.