论文标题
广告中的散射方程:定位尺寸的标量相关器
Scattering Equations in AdS: Scalar Correlators in Arbitrary Dimensions
论文作者
论文摘要
我们在广告空间中介绍了玻色症ambitwistor弦理论。即使该理论在量子水平上是异常的,但仍可以在经典限制中使用它,从而在任意时空维度中得出边界CFT运算符相关函数的新公式。所得的结构可以被视为平面S-Matrix的CHY形式主义的自然扩展,因为它类似地表达了ADS中的树级振幅,因为在Riemann Spheres的Moduli Spaine上,带有穿刺。这些积分位于散射方程的运算符值版本上,我们直接从coset歧管上的ambitwistor string动作中得出。作为这种形式主义的测试基础,我们着重于最简单的AmbitWistor弦的案例,结合了两个当前的代数,该代数为ADS提供了双连接标量表。为了直接评估它们,我们在刺破的Riemann球体的模量空间上使用一系列轮廓变形,并检查结果是否与所有多重性都与树级的Witten图计算相一致。我们还启动了AD中散射方程的本征函数的研究,这些散射方程在不同的OPE通道中的共形部分波之间插值,并指出与Calogero-Sutherland模型的椭圆形变形的联系。
We introduce a bosonic ambitwistor string theory in AdS space. Even though the theory is anomalous at the quantum level, one can nevertheless use it in the classical limit to derive a novel formula for correlation functions of boundary CFT operators in arbitrary space-time dimensions. The resulting construction can be treated as a natural extension of the CHY formalism for the flat-space S-matrix, as it similarly expresses tree-level amplitudes in AdS as integrals over the moduli space of Riemann spheres with punctures. These integrals localize on an operator-valued version of scattering equations, which we derive directly from the ambitwistor string action on a coset manifold. As a testing ground for this formalism we focus on the simplest case of ambitwistor string coupled to two current algebras, which gives bi-adjoint scalar correlators in AdS. In order to evaluate them directly, we make use of a series of contour deformations on the moduli space of punctured Riemann spheres and check that the result agrees with tree level Witten diagram computations to all multiplicity. We also initiate the study of eigenfunctions of scattering equations in AdS, which interpolate between conformal partial waves in different OPE channels, and point out a connection to an elliptic deformation of the Calogero-Sutherland model.