论文标题

离散化 - 错误精确的混合精液多机求解器

Discretization-error-accurate mixed-precision multigrid solvers

论文作者

Tamstorf, Rasmus, Benzaken, Joseph, McCormick, Stephen F.

论文摘要

本文建立在伴侣论文[混合精液多机求解器的代数误差分析]中的代数理论上,以通过混合级别的多质溶剂获得线性椭圆形偏微分方程(PDES)的离散化 - 纠错溶液(PDES)。通常假定可实现的准确性受离散化或代数错误的限制。相反,我们表明,通过简单地将矩阵存储在任何固定精度中而产生的量化误差很快就开始主导总误差,因为离散化得到了完善。我们扩展了现有理论以说明这些量化错误,并使用结果界限指导选择四个不同的精度级别的选择,以平衡伴侣论文中提出的渐进推荐方案中的量化,代数和离散错误。一个了不起的结果是,尽管迭代精致在残差和更新计算过程中易于量化误差,但用于计算每次迭代中校正的V周期更具弹性,并且如果由于量化的层次结构中的系统矩阵而变得不确定,则继续起作用。结果,V-Cycle仅需要相对较少的每个级别的精度。根据我们的发现,我们概述了一种简单的方法,可以用最少的开销来实现渐进的精确FMG求解器,并以示例表明,只要使用少数V-Cycles在下面的v-cycles效果良好时,就可以可靠地将一维的双向方程可靠地求解。在此过程中,我们还通过数值确认了许多理论结果。

This paper builds on the algebraic theory in the companion paper [Algebraic Error Analysis for Mixed-Precision Multigrid Solvers] to obtain discretization-error-accurate solutions for linear elliptic partial differential equations (PDEs) by mixed-precision multigrid solvers. It is often assumed that the achievable accuracy is limited by discretization or algebraic errors. On the contrary, we show that the quantization error incurred by simply storing the matrix in any fixed precision quickly begins to dominate the total error as the discretization is refined. We extend the existing theory to account for these quantization errors and use the resulting bounds to guide the choice of four different precision levels in order to balance quantization, algebraic, and discretization errors in the progressive-precision scheme proposed in the companion paper. A remarkable result is that while iterative refinement is susceptible to quantization errors during the residual and update computation, the V-cycle used to compute the correction in each iteration is much more resilient, and continues to work if the system matrices in the hierarchy become indefinite due to quantization. As a result, the V-cycle only requires relatively few bits of precision per level. Based on our findings, we outline a simple way to implement a progressive precision FMG solver with minimal overhead, and demonstrate as an example that the one dimensional biharmonic equation can be solved reliably to any desired accuracy using just a few V-cycles when the underlying smoother works well. In the process we also confirm many of the theoretical results numerically.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源