论文标题
毫米波细胞系统的通道参数估计与混合光束形成
Channel Parameter Estimation for Millimeter-Wave Cellular Systems with Hybrid Beamforming
论文作者
论文摘要
为了达到5G中定义的高数据速率,使用毫米波和大量MIMO是必不可少的。为了从这些技术中受益,对通道参数的准确估计至关重要。我们为通道参数估计提出了一种新型的两阶段算法。在第一阶段,通过基于DFT网格(PREIDG)使用固定查找表(LUT)应用参数估计来完成粗略估计,而第二阶段则通过空间偏置的广义期望最大化(SAGE)算法来完善估计值。两阶段算法使用离散的傅立叶变换波束形成向量,这些向量由模拟域中的管家矩阵有效地实现。我们发现,与辅助束对(ABP)方法相比,这种方法可以改善估计值。两阶段算法在低信号与噪声比率方向上显示了通道参数的有效性能,即出发角度,复杂路径的增长和多径的延迟。最后,我们得出了Cramér-Rao下限(CRLB),以评估我们两阶段估计算法的性能。
To achieve high data rates defined in 5G, the use of millimeter-waves and massive-MIMO are indispensable. To benefit from these technologies, an accurate estimation of the channel parameters is crucial. We propose a novel two-stage algorithm for channel parameters estimation. In the first stage, coarse estimation is accomplished by applying parameter estimation via interpolation based on DFT grid (PREIDG) with a fixed look-up table (LUT), while the second stage refines the estimates by means of the space-alternating generalized expectation maximization (SAGE) algorithm. The two-stage algorithm uses discrete Fourier transform beamforming vectors which are efficiently implemented by a Butler matrix in the analog domain. We found that this methodology improves the estimates compared to the auxiliary beam pair (ABP) method. The two-stage algorithm shows efficient performance in the low signal to noise ratio regime for the channel parameters i.e. angles of departure, complex path gains and delays of the multipaths. Finally, we derived the Cramér-Rao lower bound (CRLB) to assess the performance of our two-stage estimation algorithm.