论文标题
在河内难题的平行塔上:环形和有条件的三角形不等式
On the Parallel Tower of Hanoi Puzzle: Acyclicity and a Conditional Triangle Inequality
论文作者
论文摘要
本文描述了河内难题塔的平行变体。在这种并行的上下文中,提供了在配置状态空间中的最小步行及其建设性证明的两个定理。这些证据用于描述一种{\ sl denoising方法}:一种在任意的,有效的磁盘配置序列(根据拼图的规则)中识别和消除次优式转移的方法。我们讨论了这种方法对分层增强学习的潜在应用。
A parallel variant of the Tower of Hanoi Puzzle is described herein. Within this parallel context, two theorems on minimal walks in the state space of configurations, along with their constructive proofs, are provided. These proofs are used to describe a {\sl denoising method}: a method for identifying and eliminating sub-optimal transfers within an arbitrary, valid sequence of disk configurations (as per the rules of the Puzzle). We discuss potential applications of this method to hierarchical reinforcement learning.