论文标题
在Jacobi-Jordan前代数上:相关属性和双重结构
On a pre-Jacobi-Jordan algebra: relevant properties and double construction
论文作者
论文摘要
我们引入了jacobi-jordan代数,并研究了一些相关特性,例如双模型,匹配对。此外,我们建立了一个前jacobi-jordan代数,作为给定前雅各布 - 约旦代数$(\ a,\ cdot)$及其双$(\ a^{\ ast},\ circ),$ experdemed $ bilterme $ bilitric $ bilineal $ bilinear $ billine $ billine $ billye $ billye $ b,在$ \ a $和$ \ a^{\ ast}上,$。最后,在维度二的雅各比 - 约旦代数分类之后,我们彻底提供了雅各布 - 约旦前代数结构的一些双重构造。
We introduce a pre-Jacobi-Jordan algebras and study some relevant properties such as bimodules, matched pairs. Besides, we established a pre-Jacobi-Jordan algebra built as a direct sum of a given pre-Jacobi-Jordan algebra $(\A, \cdot)$ and its dual $(\A^{\ast}, \circ),$ endowed with a non-degenerate symmetric bilinear form $B,$ where $\cdot$ and $\circ$ are the products defined on $\A$ and $\A^{\ast},$ respectively. Finally, after pre-Jacobi-Jordan algebras classification in dimension two, we thoroughly give some double constructions of pre-Jacobi-Jordan algebraic structures.