论文标题
兰迪斯猜想指数衰减
The Landis conjecture on exponential decay
论文作者
论文摘要
考虑一个解决方案$ u $至$ΔU +vu = 0 $ on $ \ mathbb {r}^2 $,其中$ v $是真实的,可测量的,$ | v | \ leq 1 $。如果$ | u(x)| \ leq \ exp(-c | x | \ log^{1/2} | x |)$,$ | x |> 2 $,其中$ c $是一个足够大的绝对常数,然后是$ u \ equiv 0 $。
Consider a solution $u$ to $Δu +Vu=0$ on $\mathbb{R}^2$, where $V$ is real-valued, measurable and $|V|\leq 1$. If $|u(x)| \leq \exp(-C |x| \log^{1/2}|x|)$, $|x|>2$, where $C$ is a sufficiently large absolute constant, then $u\equiv 0$.