论文标题

METRABS:绝对3D人类姿势估计的度量尺度截断式热图

MeTRAbs: Metric-Scale Truncation-Robust Heatmaps for Absolute 3D Human Pose Estimation

论文作者

Sárándi, István, Linder, Timm, Arras, Kai O., Leibe, Bastian

论文摘要

热图表示已经构成了人类姿势估计系统的基础多年,其扩展到3D一直是最近研究的富有成果。这包括2.5D体积热图,其X和Y轴对应于图像空间,而z对应于该受试者周围的度量深度。为了获得度量标准预测,2.5D方法需要单独的后处理步骤来解决比例歧义。此外,它们不能将身体关节定位在图像边界之外,从而导致截短图像的估计不完整。为了解决这些局限性,我们提出了度量标准的截断曲线(Metro)体积热图,其尺寸均在公制3D空间中定义,而不是与图像空间对齐。热图维度的这种重新解释使我们能够直接估计完整的,度量标准的姿势,而无需测试距离知识或依赖人体测量术(例如骨长)。为了进一步证明我们的表示,我们提出了3D度量尺度热图与2D图像空间的可区分组合,以估算绝对3D姿势(我们的Metrabs体系结构)。我们发现,通过绝对姿势损失的监督对于准确的非根系定位至关重要。我们使用Resnet-50骨干无需进一步学习的层,我们获得了36m,MPI-INF-3DHP和MUPOTS-3D的最新结果。我们的代码将公开使用以促进进一步的研究。

Heatmap representations have formed the basis of human pose estimation systems for many years, and their extension to 3D has been a fruitful line of recent research. This includes 2.5D volumetric heatmaps, whose X and Y axes correspond to image space and Z to metric depth around the subject. To obtain metric-scale predictions, 2.5D methods need a separate post-processing step to resolve scale ambiguity. Further, they cannot localize body joints outside the image boundaries, leading to incomplete estimates for truncated images. To address these limitations, we propose metric-scale truncation-robust (MeTRo) volumetric heatmaps, whose dimensions are all defined in metric 3D space, instead of being aligned with image space. This reinterpretation of heatmap dimensions allows us to directly estimate complete, metric-scale poses without test-time knowledge of distance or relying on anthropometric heuristics, such as bone lengths. To further demonstrate the utility our representation, we present a differentiable combination of our 3D metric-scale heatmaps with 2D image-space ones to estimate absolute 3D pose (our MeTRAbs architecture). We find that supervision via absolute pose loss is crucial for accurate non-root-relative localization. Using a ResNet-50 backbone without further learned layers, we obtain state-of-the-art results on Human3.6M, MPI-INF-3DHP and MuPoTS-3D. Our code will be made publicly available to facilitate further research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源