论文标题

FEDBOOSTING:通过梯度保护的联合学习,以提高文本识别

FedBoosting: Federated Learning with Gradient Protected Boosting for Text Recognition

论文作者

Ren, Hanchi, Deng, Jingjing, Xie, Xianghua, Ma, Xiaoke, Wang, Yichuan

论文摘要

典型的机器学习方法需要用于模型培训的集中数据,这可能是由于隐私和梯度保护所致的数据共享限制。最近提出的联合学习(FL)框架允许协作学习共享模型,而不会在数据所有者中集中或共享数据。但是,我们在本文中表明,联合模型的概括能力在非独立和非相同分布的(非IID)数据上较差,尤其是在使用联合平均(FedAvg)策略时,由于权重差异现象而使用。因此,我们提出了一种用于FL的新型增强算法,以解决概括和梯度泄漏问题,并在基于梯度的优化中获得更快的收敛性。此外,引入了使用同态加密(HE)和差异隐私(DP)的安全梯度共享协议,以防止梯度泄漏攻击,并避免不可扩展的成对加密。我们证明了所提出的联合提升(FEDBOOSTING)方法在公共基准的视觉文本识别任务中,预测准确性和运行时间效率都取得了显着提高。

Typical machine learning approaches require centralized data for model training, which may not be possible where restrictions on data sharing are in place due to, for instance, privacy and gradient protection. The recently proposed Federated Learning (FL) framework allows learning a shared model collaboratively without data being centralized or shared among data owners. However, we show in this paper that the generalization ability of the joint model is poor on Non-Independent and Non-Identically Distributed (Non-IID) data, particularly when the Federated Averaging (FedAvg) strategy is used due to the weight divergence phenomenon. Hence, we propose a novel boosting algorithm for FL to address both the generalization and gradient leakage issues, as well as achieve faster convergence in gradient-based optimization. In addition, a secure gradient sharing protocol using Homomorphic Encryption (HE) and Differential Privacy (DP) is introduced to defend against gradient leakage attack and avoid pairwise encryption that is not scalable. We demonstrate the proposed Federated Boosting (FedBoosting) method achieves noticeable improvements in both prediction accuracy and run-time efficiency in a visual text recognition task on public benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源