论文标题

合理四分之一平面曲线空间的捆绑理论紧凑

Sheaf theoretic compactifications of the space of rational quartic plane curves

论文作者

Chung, Kiryong

论文摘要

令$ r_4 $为理性平面曲线的空间$ 4 $。在本文中,我们通过$α$ semissistable Pairs在$ \ mathbb {p}^2 $上获得$ r_4 $的捆绑理论压实,并通过可通过半固定对的墙壁交叉来获得。我们获得了压缩空间的庞加莱多项式。

Let $R_4$ be the space of rational plane curves of degree $4$. In this paper, we obtain a sheaf theoretic compactification of $R_4$ via the space of $α$-semistable pairs on $\mathbb{P}^2$ and its birational relations through wall-crossings of semistable pairs. We obtain the Poincaré polynomial of the compactified space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源