论文标题

多项式的最大模量集

The maximum modulus set of a polynomial

论文作者

Pardo-Simón, L., Sixsmith, D. J.

论文摘要

我们研究了多项式$ p $的最大模量集,$ \ mathcal {m}(p)$。我们有兴趣构建$ P $,因此$ \ Mathcal {M}(P)$具有某些非凡功能。贾西姆(Jassim)和伦敦(London)给出了立方多项式$ p $,以使$ \ mathcal {m}(p)$有一种不连续性,而泰勒(Tyler)发现了一个Quintic polyenmial $ \ tilde {p} $,因此$ \ nathcal {m} m}(m}(\ tilde {p})$有一个singleton component。这些是这种类型的唯一结果,我们可以大大加强它们。特别是,给定有限的序列$ a_1,a_2,\ ldots,a_n $具有独特的实际实数,我们构造多项式$ p $和$ \ tilde {p} $,以至于$ \ m athcal {m}(m} $ $ \ MATHCAL {M}(\ tilde {p})$在点$ a_1,a_2,\ ldots,a_n $的singleton组件。 最后,我们证明了这些结果很强,从某种意义上说,多项式不可能在其最大模量集中具有无限的许多不连续性。

We study the maximum modulus set, $\mathcal{M}(p)$, of a polynomial $p$. We are interested in constructing $p$ so that $\mathcal{M}(p)$ has certain exceptional features. Jassim and London gave a cubic polynomial $p$ such that $\mathcal{M}(p)$ has one discontinuity, and Tyler found a quintic polynomial $\tilde{p}$ such that $\mathcal{M}(\tilde{p})$ has one singleton component. These are the only results of this type, and we strengthen them considerably. In particular, given a finite sequence $a_1, a_2, \ldots, a_n$ of distinct positive real numbers, we construct polynomials $p$ and $\tilde{p}$ such that $\mathcal{M}(p)$ has discontinuities of modulus $a_1, a_2, \ldots, a_n$, and $\mathcal{M}(\tilde{p})$ has singleton components at the points $a_1, a_2, \ldots, a_n$. Finally we show that these results are strong, in the sense that it is not possible for a polynomial to have infinitely many discontinuities in its maximum modulus set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源