论文标题

CRX中的相对论交流互动$ _3 $(x = Cl,br,i)单层

Relativistic exchange interactions in CrX$_3$ (X=Cl, Br, I) monolayers

论文作者

Kvashnin, Y. O., Bergman, A., Lichtenstein, A. I., Katsnelson, M. I.

论文摘要

在理论上和间接地证实了单层CRX $ _3 $(x = Cl,br,i)可能是拓扑磁绝缘子(TMI)的原型。在这项工作中,通过使用第一原理计算与原子自旋动力学结合使用,我们提供了CRX $ _3 $中磁相互作用和磁激发的完整图片。这里的重点放在TMI实际实现的两个最重要方面,即相对论磁相互作用和有限大小(边缘)效应。我们计算完整的相互作用张量,其中包括Kitaev和Dzyaloshinskii-Moriya术语,这些术语被认为是稳定拓扑元音的最可能机制。首先,我们启动了块状CRI $ _3 $的属性,并将模拟磁谱与实验数据进行比较[Phys。修订版X 8,041028(2018)]。我们的结果表明,在实验中看到的很大的拓扑间隙(约合$ 4 MEV)无法通过仅考虑配对自旋相互作用来解释。我们确定了这种分歧的几个可能原因,并表明在这类材料中应该期望有明显的磁弹性耦合。还研究了CRX $ _3 $的单层中的磁相互作用。表现出各向异性相互作用的强度与周期表中卤化物原子的位置相规,元素越重,越大的是各向异性。比较散装和单层CRI $ _3 $的镁质,我们发现在后一种情况下,拓扑间隙的大小变小。最后,我们研究了单层中的有限尺寸效应,并证明靠近边缘的Cr原子之间的各向异性耦合要比理想的周期性结构强得多。这应该对这类材料中的镁边缘模式的动力学产生影响。

It has been predicted theoretically and indirectly confirmed experimentally that single-layer CrX$_3$ (X=Cl, Br, I) might be the prototypes of topological magnetic insulators (TMI). In this work, by using first-principles calculations combined with atomistic spin dynamics we provide a complete picture of the magnetic interactions and magnetic excitations in CrX$_3$. The focus is here on the two most important aspects for the actual realization of TMI, namely the relativistic magnetic interactions and the finite-size (edge) effects. We compute the full interaction tensor, which includes both Kitaev and Dzyaloshinskii-Moriya terms, which are considered as the most likely mechanisms for stabilizing topological magnons. First, we instigate the properties of bulk CrI$_3$ and compare the simulated magnon spectrum with the experimental data [Phys. Rev. X 8, 041028 (2018)]. Our results suggest that a large size of topological gap, seen in experiment ($\approx$ 4 meV), can not be explained by considering pair-wise spin interactions only. We identify several possible reasons for this disagreement and suggest that a pronounced magneto-elastic coupling should be expected in this class of materials. The magnetic interactions in the monolayers of CrX$_3$ are also investigated. The strength of the anisotropic interactions is shown to scale with the position of halide atom in the Periodic Table, the heavier the element the larger is the anisotropy. Comparing the magnons for the bulk and single-layer CrI$_3$, we find that the size of the topological gap becomes smaller in the latter case. Finally, we investigate finite-size effects in monolayers and demonstrate that the anisotropic couplings between Cr atoms close to the edges are much stronger than those in ideal periodic structure. This should have impact on the dynamics of the magnon edge modes in this class of materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源