论文标题
学习与贝叶斯神经网络进行视觉惯性探针的学习乘法互动
Learning Multiplicative Interactions with Bayesian Neural Networks for Visual-Inertial Odometry
论文作者
论文摘要
本文提出了一种单眼视觉惯性探测器(VIO)的端到端多模式学习方法,该方法是专门设计用于根据传感器退化方案来利用传感器互补性的。所提出的网络利用多头自发动机制,该机制学习了多个信息流之间的乘法相互作用。我们方法的另一个设计特征是使用可扩展的拉普拉斯近似结合模型不确定性。我们通过将提出方法与Kitti数据集上的端到端最新方法进行比较来评估该方法的性能,并表明其实现了卓越的性能。重要的是,我们的工作提供了一个经验证据,表明学习乘法相互作用可能会导致强大的诱导偏见,从而增加对传感器失败的鲁棒性。
This paper presents an end-to-end multi-modal learning approach for monocular Visual-Inertial Odometry (VIO), which is specifically designed to exploit sensor complementarity in the light of sensor degradation scenarios. The proposed network makes use of a multi-head self-attention mechanism that learns multiplicative interactions between multiple streams of information. Another design feature of our approach is the incorporation of the model uncertainty using scalable Laplace Approximation. We evaluate the performance of the proposed approach by comparing it against the end-to-end state-of-the-art methods on the KITTI dataset and show that it achieves superior performance. Importantly, our work thereby provides an empirical evidence that learning multiplicative interactions can result in a powerful inductive bias for increased robustness to sensor failures.