论文标题

概念证明:自动型识别

Proof of Concept: Automatic Type Recognition

论文作者

Christlein, Vincent, Weichselbaumer, Nikolaus, Limbach, Saskia, Seuret, Mathias

论文摘要

用于打印早期现代书籍的类型可以为学者提供有关其生产时间和地点及其生产者的宝贵信息。当前,使用“ M”或“ QU”的字符形状和总类型的大小来识别这种类型,以在大型参考工作中查找。这是一种可靠的方法,但也很慢,需要特定的技能。我们使用新创建的数据集研究了类型分类和类型检索的性能,该数据集由早期印刷书籍中使用的简单和困难类型组成。对于类型分类,我们依赖于最初用于FONT组分类的深卷积神经网络(CNN),而我们在检索情况下使用常见的作者识别方法。我们表明,在这两种情况下,都可以很高的精度将简单类型的类型分类/检索,而困难的情况确实很困难。

The type used to print an early modern book can give scholars valuable information about the time and place of its production as well as its producer. Recognizing such type is currently done manually using both the character shapes of `M' or `Qu' and the size of the total type to look it up in a large reference work. This is a reliable method, but it is also slow and requires specific skills. We investigate the performance of type classification and type retrieval using a newly created dataset consisting of easy and difficult types used in early printed books. For type classification, we rely on a deep Convolutional Neural Network (CNN) originally used for font-group classification while we use a common writer identification method for the retrieval case. We show that in both scenarios, easy types can be classified/retrieved with a high accuracy while difficult cases are indeed difficult.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源