论文标题
对线性弹性问题的二元性论点与不兼容的变形场
Duality arguments for linear elasticity problems with incompatible deformation fields
论文作者
论文摘要
我们证明了解决方案的存在和唯一性,即在存在塑料滑移的情况下独立,无牵引,无均匀晶体的平衡问题。此外,我们证明,在操作员的G连接下,这类问题已关闭。特别是在线性弹性中对椭圆系统有效的均质化过程描绘了在存在塑性变形的情况下复合材料的宏观特征。
We prove existence and uniqueness for solutions to equilibrium problems for free-standing, traction-free, non homogeneous crystals in the presence of plastic slips. Moreover we prove that this class of problems is closed under G-convergence of the operators. In particular the homogenization procedure, valid for elliptic systems in linear elasticity, depicts the macroscopic features of a composite material in the presence of plastic deformation.