论文标题

最小长度对林德勒空间中粒子运动的影响

Minimal Length Effects on Motion of a Particle in Rindler Space

论文作者

Guo, Xiaobo, Liang, Kangkai, Mu, Benrong, Wang, Peng, Yang, Mingtao

论文摘要

各种重力理论预测了最小可测量长度的存在。在本文中,我们研究了最小长度对谐波电位下林德勒空间中粒子运动的影响。该玩具模型捕获了黑洞地平线附近粒子动力学的关键特征,并使我们能够进行三个观察。首先,我们发现混乱的行为随着最小长度效应的增加而更强,这表明最大的lyapunov特征指数大部分是生长的,并且截面的庞加莱表面上的kam曲线倾向于崩解成混乱的层。其次,在最小的长度效应的情况下,粒子越过Rindler Horizo​​n可能需要有限的Rindler时间,这意味着黑洞的缩短时间较短。最后,它表明某些Lyapunov特征指数可能大于地平线的表面重力,从而违反了最近猜想的通用上限。简而言之,我们的结果表明,量子重力效应可能会使黑洞容易发生更多的混乱和更快的争夺。

Various quantum theories of gravity predict the existence of a minimal measurable length. In this paper, we study effects of the minimal length on the motion of a particle in the Rindler space under a harmonic potential. This toy model captures key features of particle dynamics near a black hole horizon, and allows us to make three observations. First, we find that the chaotic behavior is stronger with the increases of the minimal length effects, which manifests that the maximum Lyapunov characteristic exponents mostly grow, and the KAM curves on Poincaré surfaces of section tend to disintegrate into chaotic layers. Second, in the presence of the minimal length effects, it can take a finite amount of Rindler time for a particle to cross the Rindler horizon, which implies a shorter scrambling time of black holes. Finally, it shows that some Lyapunov characteristic exponents can be greater than the surface gravity of the horizon, violating the recently conjectured universal upper bound. In short, our results reveal that quantum gravity effects may make black holes prone to more chaos and faster scrambling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源