论文标题
相干分布的最大传播:几何和组合透视图
Maximal Spread of Coherent Distributions: a Geometric and Combinatorial Perspective
论文作者
论文摘要
我们讨论有关相干分布最大传播的一些开放问题。我们证明,$ \ Mathbb {e} | x-y |^α$ for $(x,y)$相干和$α\ le 2 $,并在相干分布与诸如双方图形,共轭分区和Ferrer图等组合对象之间建立了新颖的连接。我们的结果可能不仅对概率主义者,而且对图形理论家有帮助,尤其是对于那些对数学化学感兴趣的人和拓扑指数研究的人。
We discuss some open problems concerning the maximal spread of coherent distributions. We prove a sharp bound on $\mathbb{E}|X-Y|^α$ for $(X,Y)$ coherent and $α\le 2$, and establish a novel connection between coherent distributions and such combinatorial objects as bipartite graphs, conjugate partitions and Ferrer diagrams. Our results may turn out to be helpful not only for probabilists, but also for graph theorists, especially for those interested in mathematical chemistry and the study of topological indices.