论文标题
在复合物上转移代数结构
Transferring algebra structures on complexes
论文作者
论文摘要
我们讨论了一种沿适当的同型等效的复合物上传递代数结构的同源方法,包括在应用扰动引理后获得的。我们研究了这种同质摩托等效率下的同型转移定理的含义。 作为应用程序,我们讨论了如何在由缩放的de rham映射给出的koszul复合物上使用同喻,以找到一种在众所周知的分辨率上构建DG代数结构的新方法,并获得了一个既具有混凝土又是置换不变的方法。
We discuss a homological method for transferring algebra structures on complexes along suitably nice homotopy equivalences, including those obtained after an application of the Perturbation Lemma. We study the implications for the Homotopy Transfer Theorems under such homotopy equivalences. As an application, we discuss how to use the homotopy on a Koszul complex given by a scaled de Rham map to find a new method for building a dg algebra structure on a well-known resolution, obtaining one that is both concrete and permutation invariant.