论文标题
剪切应力雷诺的极限公式
A Shear Stress Reynolds' Limit Formula
论文作者
论文摘要
从历史上看,气象学和气候研究是由于需要理解降水以在粮食生产中更好的物流而引起的。尽管做出了所有努力,大气动态中的非线性仍然是不确定性的根源。另一方面,航空科学研究了边界层通过\ emph {剪切应力}的分离。在这项工作中,通过\ emph {diffeoMorthisms}在\ emph {lipschitz域}的连续层中对方法中方法的数学解释,使我们能够估计边界层的\ emph {shear struse},shear worce},$τ^{**d $和$ y Mutterieric and $和$ y Muther and und and trul and hum hum ind try and und try try and trul假设在保护动量方程中没有对流的衍生术语,或者气体边界层是不可压缩的:\ [τ^{*} _ d = \ frac {u} {u} {h} {h} {h} {h} \ hspace {7pt}τ^{*} _ m = \ frac { \ emph {自由流速度}; $ c_ {pd} $是\ emph {在干燥空气持续压力下的特定热量},$ c_ {pm} $是\ emph {在恒定压力下的特定热量}。此外,如果$ \ hat {r} _m $是a \ emph {潮湿空气的气体常数,而$ p_0 $是表面的压力,则密度$ρ\ hspace {2pt} \ cong \ cong \ cong \ hspace {2pt} \ hspace {2pt} \ hat {r} _ {m}^{ - 1} \ hspace {2pt} \ left [1- \ left(u^2/2c_ {ph} t_0 \ right)此外,这打开了找到不同确定性大气家族自然对流模型的可能性。
Historically, meteorological and climate studies have been prompted by the need for understanding precipitation to have better logistics in food production. Despite all efforts, nonlinearity in atmosphere dynamics is still a source of uncertainty. On the other hand, aeronautical science studies the boundary layer separation through the \emph{shear stress}. In this work, a mathematical interpretation of methods in classical aerodynamics theory in terms of successive layers of \emph{diffeomorphisms} over \emph{Lipschitz domains} allows us to estimate the boundary layer's \emph{shear stress}, $τ^{*}_d$ and $τ^{*}_m$, in dry and humid atmospheric conditions without assuming that there is not a convective derivative term in the conservation of momentum equation or that the gaseous boundary layer is incompressible: \[ τ^{*}_d = \frac{U}{h}\ \left(1-\frac{U^2}{2c_{pd}\ T_0}\right)^{19/25}, \hspace{7pt} τ^{*}_m = \frac{U}{h}\ \left(1-\frac{U^2}{2c_{pm}\ T_0}\right)^{19/25},\] where $h$ is the boundary layer's height, $T_0$ is the surface temperature, $U$ is the \emph{free stream velocity}; $c_{pd}$ is the \emph{specific heat at constant pressure for dry air} and $c_{pm}$ is the \emph{specific heat at constant pressure for moist air}. Furthermore, if $\hat{R}_m$ is a \emph{gas constant for moist air} and $p_0$ is the pressure at the surface, the density $ρ\hspace{2pt} \cong \hspace{2pt} p_0 \hspace{2pt} T_0^{\frac{2b}{b-1}-1} \hspace{2pt} \hat{R}_{m}^{-1} \hspace{2pt} \left[1-\left(U^2/2c_{ph}T_0\right)\right]^{\frac{b}{(b-1)}-1}$ for $b=1.405$. Moreover, this opens the possibility of finding a different deterministic family of atmosphere natural convection models.