论文标题
弥漫性星际介质的灰尘两极化排放的统计描述 - RWST方法
Statistical description of dust polarized emission from the diffuse interstellar medium -- A RWST approach
论文作者
论文摘要
CMB的弥散性磁化ISM和银河前景的统计表征提出了重大挑战。为了说明其非高斯统计数据,我们需要一种数据分析方法,能够有效地量化尺度统计耦合。此信息是在数据中编码的,但是当使用常规工具(例如单点统计和功率谱)时,其中大部分会丢失。小波散射变换(WST)是数据科学中引入的非高斯过程的低变化统计描述符,为这一目标开辟了道路。我们将WST应用于根据MHD湍流的数值模拟计算出的灰尘偏振热发射的无噪声图。我们分析了极化分数和极化角度的归一化复合物图和图。 WST产生几千个系数;其中一些人以给定的比例测量信号的幅度,而另一些则表征了尺度和方向之间的耦合。对方向的依赖性可以与还原的WST(RWST)拟合,这是先前工作中引入的角度模型。 RWST提供了极化图的统计描述,从各向同性和各向异性贡献方面量化其多尺度性能。它使我们能够表现出地图结构对平均磁场方向的依赖性,并量化数据的非高斯性。我们还使用RWST系数,并补充了其他约束,以生成具有相似统计数据的随机合成图。他们与原始地图的同意证明了RWST提供的统计描述的全面性。这项工作是分析观测数据和CMB前景建模的一步。我们还发布了PYWST,这是一个Python软件包,可在以下位置执行WST/RWST分析:https://github.com/bregaldo/pywst。
The statistical characterization of the diffuse magnetized ISM and Galactic foregrounds to the CMB poses a major challenge. To account for their non-Gaussian statistics, we need a data analysis approach capable of efficiently quantifying statistical couplings across scales. This information is encoded in the data, but most of it is lost when using conventional tools, such as one-point statistics and power spectra. The wavelet scattering transform (WST), a low-variance statistical descriptor of non-Gaussian processes introduced in data science, opens a path towards this goal. We applied the WST to noise-free maps of dust polarized thermal emission computed from a numerical simulation of MHD turbulence. We analyzed normalized complex Stokes maps and maps of the polarization fraction and polarization angle. The WST yields a few thousand coefficients; some of them measure the amplitude of the signal at a given scale, and the others characterize the couplings between scales and orientations. The dependence on orientation can be fitted with the reduced WST (RWST), an angular model introduced in previous works. The RWST provides a statistical description of the polarization maps, quantifying their multiscale properties in terms of isotropic and anisotropic contributions. It allowed us to exhibit the dependence of the map structure on the orientation of the mean magnetic field and to quantify the non-Gaussianity of the data. We also used RWST coefficients, complemented by additional constraints, to generate random synthetic maps with similar statistics. Their agreement with the original maps demonstrates the comprehensiveness of the statistical description provided by the RWST. This work is a step forward in the analysis of observational data and the modeling of CMB foregrounds. We also release PyWST, a Python package to perform WST/RWST analyses at: https://github.com/bregaldo/pywst.