论文标题

汽车循环和Metabelian组

Automorphic loops and metabelian groups

论文作者

Greer, Mark, Raney, Lee

论文摘要

给定一个独特的2分组$ g $,我们研究了\ cite {baer}的施工而产生的交换环$(g,\ circ)$。我们调查了$ \ circ $的一些一般属性和应用程序,并确定$ g $的必要条件,以便为$(g,\ circ)$作为moufang。在\ cite {greer14}中,猜测$ g $是metabelian,并且仅当$(g,\ circ)$是自动循环时。我们以肯定的方式回答了这一猜想的一部分:特别是,我们表明,如果$ g $是一个拆分的metabelian奇数订单组,则$(g,\ circ)$是自动形态。

Given a uniquely 2-divisible group $G$, we study a commutative loop $(G,\circ)$ which arises as a result of a construction in \cite{baer}. We investigate some general properties and applications of $\circ$ and determine a necessary and sufficient condition on $G$ in order for $(G, \circ)$ to be Moufang. In \cite{greer14}, it is conjectured that $G$ is metabelian if and only if $(G, \circ)$ is an automorphic loop. We answer a portion of this conjecture in the affirmative: in particular, we show that if $G$ is a split metabelian group of odd order, then $(G, \circ)$ is automorphic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源