论文标题
混合世界中的自适应精确学习:处理字符串重建中的周期性,错误和混乱的索引查询
Adaptive Exact Learning in a Mixed-Up World: Dealing with Periodicity, Errors and Jumbled-Index Queries in String Reconstruction
论文作者
论文摘要
我们研究了从自适应查询(例如子字符串,子序列和混合索引查询)中重建字符串的问题的查询复杂性。此类问题具有应用于计算生物学的应用。对于字符串或查询为“混合”的设置,我们为精确的字符串重建提供了许多新的和改进的界限。例如,我们表明,最小的$ p $的定期(即“混合”)字符串,$ s = p^kp'$,其中$ | p'| <| p | $可以使用$ o(σ| p |+\ lg lg n)$ substring查询来重建,$σ$是$σ$,而$σ$是alphabet size $ $ nes if $ n if $ n | s | s | s | s | s | s | s | s | s | s | s | s | s | s | s | s | s | s | s | s.我们还表明,通过锤击距离衡量的少数错误$ d $损坏后,我们可以重建$ s $。在这种情况下,我们提供了一种使用$ O(dσ| p | + d | p | \ lg \ frac {n} {d + 1})$ queries的算法。此外,我们还表明,可以使用$2σ\ lg \ lg n \ rceil + 2 | p | \ lg \ lg \lgσ\ rceil $子序列查询来重建周期字符串,并且可以使用$2σ\ lgg n \ rceil $ n \ r \ r \ r \ r \ r \ r \ r \ r ce \ r c rceil $子序列查询,并可以重建一般条件。查询,没有提前$ n $的知识。后者的结果改善了Skiena和Sundaram先前最好的数十年成绩。最后,我们相信我们是第一个使用Jumbled-Index查询来研究弦乐重建的精确学习查询复杂性的人,这些查询是最近引起了很多关注的“混合”查询类型。
We study the query complexity of exactly reconstructing a string from adaptive queries, such as substring, subsequence, and jumbled-index queries. Such problems have applications, e.g., in computational biology. We provide a number of new and improved bounds for exact string reconstruction for settings where either the string or the queries are "mixed-up". For example, we show that a periodic (i.e., "mixed-up") string, $S=p^kp'$, of smallest period $p$, where $|p'|<|p|$, can be reconstructed using $O(σ|p|+\lg n)$ substring queries, where $σ$ is the alphabet size, if $n=|S|$ is unknown. We also show that we can reconstruct $S$ after having been corrupted by a small number of errors $d$, measured by Hamming distance. In this case, we give an algorithm that uses $O(dσ|p| + d|p|\lg \frac{n}{d+1})$ queries. In addition, we show that a periodic string can be reconstructed using $2σ\lceil\lg n\rceil + 2|p|\lceil\lg σ\rceil$ subsequence queries, and that general strings can be reconstructed using $2σ\lceil\lg n\rceil + n\lceil\lg σ\rceil$ subsequence queries, without knowledge of $n$ in advance. This latter result improves the previous best, decades-old result, by Skiena and Sundaram. Finally, we believe we are the first to study the exact-learning query complexity for string reconstruction using jumbled-index queries, which are a "mixed-up" typeA of query that have received much attention of late.