论文标题
瞬时电致发光的动力学建模揭示了基于Expilex的TADF OLED中TTA作为效率限制过程
Kinetic Modeling of Transient Electroluminescence reveals TTA as Efficiency-Limiting Process in Exciplex-Based TADF OLEDs
论文作者
论文摘要
基于热激活的延迟荧光(TADF)的有机光发射二极管(OLEDS)显示,由于反向跨间系统交叉(RISC),非放电三胞胎状态对发射式单线状态的有效上转换导致效率提高。为了评估具有特征效率提高RISC过程的影响以及在操作OLED中的可能限制效应,我们进行了瞬时电致发光(TREL)的温度依赖性测量。通过动力学建模,我们量化并分离了在已建立的供体中对不同温度依赖性降低过程和对EL的贡献的影响:受体模型系统M-MTDATA:3TPYMB。适用于TADF系统的EL测量的基本速率方程包括辐射和非辐射的一阶和二阶效应。通过这种方式,我们能够根据对这些OLED的效率限制作用来评估非辐射重组和an灭过程。一方面,我们通过非辐射直接三重衰变,RISC和Triplet-Triplet ni灭(TTA)评估了分子间离心三重态的减少。另一方面,我们通过极地,RISC和TTA从单线移动态的形成中确定了EL的贡献。我们的结果表明,TTA在三重态人口减少方面有很大一部分,并在限制整体设备量子效率的同时有助于EL。
Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) show increased efficiencies due to efficient upconversion of non-emissive triplet states to emissive singlets states via reverse intersystem crossing (RISC). To assess the influence of the characteristic efficiency-enhancing RISC process as well as possible efficiency-limiting effects in operational OLEDs, we performed temperature-dependent measurements of transient electroluminescence (trEL). With kinetic modeling, we quantify and separate the impact of different temperature-dependent depopulation processes and contributions to EL in the established donor:acceptor model system m-MTDATA:3TPYMB. The underlying rate equations adapted for EL measurements on TADF systems include radiative and non-radiative first- and second-order effects. In this way, we are able to evaluate the non-radiative recombination and annihilation processes with respect to their efficiency-limiting effects on these OLEDs. On the one hand, we evaluate the depopulation of intermolecular exciplex triplet states via non-radiative direct triplet decay, RISC and triplet-triplet annihilation (TTA). On the other hand, we determine the contribution to EL from the formation of singlet exciplex states via polarons, RISC and TTA. Our results show that TTA accounts for a significant part to triplet depopulation and contributes to EL while limiting the overall device quantum efficiency.