论文标题
完成的SDSS-IV扩展BARYON振荡光谱调查:从各向异性聚类分析的结构测量速率在构型聚类分析中,在红移0.6和1.1之间的发射线样品中
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the Emission Line Galaxy sample
论文作者
论文摘要
我们介绍了Sloan Digital Sky Survey IV(SDSS-IV)扩展的BARYON振荡光谱调查(EBOSS)数据释放的排放线星系(ELG)各向异性聚类(ELGS)。我们的样本由173,736 elg组成,覆盖了1170度的面积$^2 $,超过了红移范围$ 0.6 \ leq Z \ leq 1.1 $。除了高斯流式红移空间扭曲之外,我们还使用卷积的拉格朗日扰动理论来对各向异性相关函数的Legendre Multiles进行建模。我们表明,EBOSS ELG相关函数测量受径向积分约束的贡献的影响,该径向积分约束需要进行建模,以避免偏见结果。为了减轻未知角系统学的影响,我们采用了修改的相关函数估计器,该函数估计器取消群集的角模式。在有效的红移时,$ z {\ rm eff} = 0.85 $,包括统计和系统不确定性,我们测量结构的线性增长$fσ_8(z _ {\ rm eff})= 0.35 \ pm0.10 $ 19.1^{+1.9} _ { - 2.1} $和comoving Angular直径距离$ d_m(z _ {\ rm eff})/r _ {\ rm drag} = 19.9 \ pm1.0 $。这些结果与傅立叶空间分析一致,导致共识值:$fσ_8(z _ {\ rm eff})= 0.315 \ pm0.095 $,$ d_h(z _ {\ rm eff})/rm _ {\ rm drag} $ d_m(z _ {\ rm eff})/r _ {\ rm drag} = 19.5 \ pm1.0 $,与$λ$ CDM模型预测具有Planck参数。
We present the anisotropic clustering of emission line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173,736 ELGs covering an area of 1170 deg$^2$ over the redshift range $0.6 \leq z \leq 1.1$. We use the Convolution Lagrangian Perturbation Theory in addition to the Gaussian Streaming Redshift-Space Distortions to model the Legendre multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation function estimator that cancels out the angular modes from the clustering. At the effective redshift, $z_{\rm eff}=0.85$, including statistical and systematical uncertainties, we measure the linear growth rate of structure $fσ_8(z_{\rm eff}) = 0.35\pm0.10$, the Hubble distance $D_H(z_{\rm eff})/r_{\rm drag} = 19.1^{+1.9}_{-2.1}$ and the comoving angular diameter distance $D_M(z_{\rm eff})/r_{\rm drag} = 19.9\pm1.0$. These results are in agreement with the Fourier space analysis, leading to consensus values of: $fσ_8(z_{\rm eff}) = 0.315\pm0.095$, $D_H(z_{\rm eff})/r_{\rm drag} = 19.6^{+2.2}_{-2.1}$ and $D_M(z_{\rm eff})/r_{\rm drag} = 19.5\pm1.0$, consistent with $Λ$CDM model predictions with Planck parameters.