论文标题

多级运动计划:纤维束配方

Multilevel Motion Planning: A Fiber Bundle Formulation

论文作者

Orthey, Andreas, Akbar, Sohaib, Toussaint, Marc

论文摘要

使用多级抽象通常可以更快地解决高维运动计划问题。尽管有多种方式可以正式捕获多级抽象,但我们以纤维束的方式进行了制定。纤维束基本上描述了使用局部产品空间来描述状态空间的较低维度,这使我们能够根据捆绑限制和捆绑部分来清楚和得出新颖的算法。鉴于这种结构和相应的可允许约束函数,我们为高维状态空间开发了高效且渐近的基于采样的运动计划方法。这些方法通过使用捆绑原始图来利用纤维束的结构。这些原语用于创建新颖的捆绑计划者,快速探索的商树(QRRT*)和商空间路线图计划者(QMP*)。两位计划者都表现为概率完整且几乎渐近地最佳。为了评估我们的捆绑计划者,我们将它们与四个低维情况的基准测试和基于经典的采样计划者进行了比较,以及八个高维场景,范围从21至100度的自由度不等,包括多个机器人和非人工限制。我们的发现显示了多达2至6个数量级的改进,并强调了多级运动计划者的效率,以及使用纤维束术语利用多级抽象的好处。

High-dimensional motion planning problems can often be solved significantly faster by using multilevel abstractions. While there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles. Fiber bundles essentially describe lower-dimensional projections of the state space using local product spaces, which allows us to concisely describe and derive novel algorithms in terms of bundle restrictions and bundle sections. Given such a structure and a corresponding admissible constraint function, we develop highly efficient and asymptotically-optimal sampling-based motion planning methods for high-dimensional state spaces. Those methods exploit the structure of fiber bundles through the use of bundle primitives. Those primitives are used to create novel bundle planners, the rapidly-exploring quotient-space trees (QRRT*), and the quotient-space roadmap planner (QMP*). Both planners are shown to be probabilistically complete and almost-surely asymptotically optimal. To evaluate our bundle planners, we compare them against classical sampling-based planners on benchmarks of four low-dimensional scenarios, and eight high-dimensional scenarios, ranging from 21 to 100 degrees of freedom, including multiple robots and nonholonomic constraints. Our findings show improvements up to 2 to 6 orders of magnitude and underline the efficiency of multilevel motion planners and the benefit of exploiting multilevel abstractions using the terminology of fiber bundles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源