论文标题
在3+1和2+1维度中的圆形运动温度和模拟临时温度
Unruh and analogue Unruh temperatures for circular motion in 3+1 and 2+1 dimensions
论文作者
论文摘要
UNRUH效果指出,具有适当加速的均值线性加速观察者$ A $ A $ a $ a体验Minkowski真空作为温度下的热状态$ t _ {\ text {\ text {lin}} = a/(2π)$,可通过详细的平衡条件在激发和推测性概率之间进行操作。均匀圆形运动的观察者经历了类似的Unruh型温度$ t _ {\ text {circ}} $,可以通过详细的平衡条件进行操作,而是$ t _ {\ text {circ}} $,不仅取决于适当的加速度,还取决于眶径和excitius和Excientition和Extiticity。我们为$ t _ {\ text {circ}} $建立了分析结果,用于$ 3+1 $ $ 3+1 $和$ 2+1 $ $ 2+1 $时空维度的分析结果,在参数空间的几个渐近区域中,我们在插值区域中给出了数值结果。在超级限制中,我们在$ 3+1 $尺寸中验证$ t _ {\ text {circ}} $的顺序为$ t _ {\ text {lin}} $在能量上均匀的能量,以前是unruh以前发现的,但在$ 2+1 $ 2+1 $ t $ t y y y and point y peacties and peacties and pection courtie courties circiie courcies circiie} $ cird} $ circiie} $ circiie} $ circiie}我们将这些结果转化为一种模拟时空非依次主义场理论,其中圆形加速度效应在不久的将来可能可以在实验上进行测试。我们特别确定循环运动模拟温度在近乎通信的限制下任意较大,这是令人鼓舞的,但对于实验前景而言,增长在有效的时空尺寸$ 2+1 $上比$ 3+1 $中的增长较弱。
The Unruh effect states that a uniformly linearly accelerated observer with proper acceleration $a$ experiences Minkowski vacuum as a thermal state in the temperature $T_{\text{lin}} = a/(2π)$, operationally measurable via the detailed balance condition between excitation and de-excitation probabilities. An observer in uniform circular motion experiences a similar Unruh-type temperature $T_{\text{circ}}$, operationally measurable via the detailed balance condition, but $T_{\text{circ}}$ depends not just on the proper acceleration but also on the orbital radius and on the excitation energy. We establish analytic results for $T_{\text{circ}}$ for a massless scalar field in $3+1$ and $2+1$ spacetime dimensions in several asymptotic regions of the parameter space, and we give numerical results in the interpolating regions. In the ultrarelativistic limit, we verify that in $3+1$ dimensions $T_{\text{circ}}$ is of the order of $T_{\text{lin}}$ uniformly in the energy, as previously found by Unruh, but in $2+1$ dimensions $T_{\text{circ}}$ is significantly lower at low energies. We translate these results to an analogue spacetime nonrelativistic field theory in which the circular acceleration effects may become experimentally testable in the near future. We establish in particular that the circular motion analogue Unruh temperature grows arbitrarily large in the near-sonic limit, encouragingly for the experimental prospects, but the growth is weaker in effective spacetime dimension $2+1$ than in $3+1$.