论文标题

蒙德里亚艺术问题的新结果

New results for the Mondrian art problem

论文作者

Dalfó, C., Fiol, M. A., López, N.

论文摘要

蒙德里安的问题包括将侧面长度的正方形$ n \ in \ nn $剖析到具有自然长度侧面的非统一矩形中,以使得$ d(n)$之间的差异$ d(n)$之间的矩形和最小的区域分区的平方是最小的。在本文中,我们根据方形分区的矩形数量计算$ d(n)$的一些界限。这些界限为我们提供了\ nn $中$ n \的某些值的最佳分区。我们提供一系列方形分区,以使$ d(n)/n^2 $趋于零$ n $大。 For the case of `perfect' partitions, that is, with $d(n)=0$, we show that, for any fixed powers $s_1,\ldots, s_m$, a square with side length $n=p_1^{s_1}\cdots p_m^{s_m}$, can have a perfect Mondrian partition only if $p_1$ satisfies a given lower bound.此外,如果$ n(x)$是$ x $(带有$ n \ le x $)的正方形的侧面长度,我们证明其“密度” $ \ frac {n(x)} {x){x} $是$ \ frac {(frac {(frac frac {(frac log){\ log(\ log log(x x)^2})

The Mondrian problem consists of dissecting a square of side length $n\in \NN$ into non-congruent rectangles with natural length sides such that the difference $d(n)$ between the largest and the smallest areas of the rectangles partitioning the square is minimum. In this paper, we compute some bounds on $d(n)$ in terms of the number of rectangles of the square partition. These bounds provide us optimal partitions for some values of $n \in \NN$. We provide a sequence of square partitions such that $d(n)/n^2$ tends to zero for $n$ large enough. For the case of `perfect' partitions, that is, with $d(n)=0$, we show that, for any fixed powers $s_1,\ldots, s_m$, a square with side length $n=p_1^{s_1}\cdots p_m^{s_m}$, can have a perfect Mondrian partition only if $p_1$ satisfies a given lower bound. Moreover, if $n(x)$ is the number of side lengths $x$ (with $n\le x$) of squares not having a perfect partition, we prove that its `density' $\frac{n(x)}{x}$ is asymptotic to $\frac{(\log(\log(x))^2}{2\log x}$, which improves previous results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源