论文标题

高属曲线模量空间的边界复合物

Boundary complexes of moduli spaces of curves in higher genus

论文作者

Clader, Emily, Luber, Dante, Quillin, Kyla

论文摘要

鉴于在稳定属的N点曲线的模量空间中的边界除数集合,Giansiracusa证明了它们的交叉点是非空的,并且仅当所有成对交集都是非空的。我们给出了对(g,n)的完整分类(g,n),类似陈述在该属G属的N点曲线的模量空间中。

Given a collection of boundary divisors in the moduli space of stable genus-zero n-pointed curves, Giansiracusa proved that their intersection is nonempty if and only if all pairwise intersections are nonempty. We give a complete classification of the pairs (g,n) for which the analogous statement holds in the moduli space of n-pointed curves of genus g.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源