论文标题
高属曲线模量空间的边界复合物
Boundary complexes of moduli spaces of curves in higher genus
论文作者
论文摘要
鉴于在稳定属的N点曲线的模量空间中的边界除数集合,Giansiracusa证明了它们的交叉点是非空的,并且仅当所有成对交集都是非空的。我们给出了对(g,n)的完整分类(g,n),类似陈述在该属G属的N点曲线的模量空间中。
Given a collection of boundary divisors in the moduli space of stable genus-zero n-pointed curves, Giansiracusa proved that their intersection is nonempty if and only if all pairwise intersections are nonempty. We give a complete classification of the pairs (g,n) for which the analogous statement holds in the moduli space of n-pointed curves of genus g.