论文标题

在点云中学习高斯实例细分

Learning Gaussian Instance Segmentation in Point Clouds

论文作者

Liu, Shih-Hung, Yu, Shang-Yi, Wu, Shao-Chi, Chen, Hwann-Tzong, Liu, Tyng-Luh

论文摘要

本文提出了一种新颖的方法,例如分割3D点云。所提出的方法称为高斯实例中心网络(GICN),它可以近似于当高斯中心热图中散布在整个场景中的实例中心的分布。基于预测的热图,可以轻松选择少数中心候选者以效率以后的预测,包括i)预测每个中心的实例大小以决定提取特征的范围,ii)为中心生成边界框,以及iiii)产生最终实例掩码。 GICN是一种单阶段,无锚和端到端的体系结构,易于训练且有效地执行推理。我们的方法从扫描仪和S3DIS数据集的3D实例细分任务中得益于自适应实例大小选择的中心机制。

This paper presents a novel method for instance segmentation of 3D point clouds. The proposed method is called Gaussian Instance Center Network (GICN), which can approximate the distributions of instance centers scattered in the whole scene as Gaussian center heatmaps. Based on the predicted heatmaps, a small number of center candidates can be easily selected for the subsequent predictions with efficiency, including i) predicting the instance size of each center to decide a range for extracting features, ii) generating bounding boxes for centers, and iii) producing the final instance masks. GICN is a single-stage, anchor-free, and end-to-end architecture that is easy to train and efficient to perform inference. Benefited from the center-dictated mechanism with adaptive instance size selection, our method achieves state-of-the-art performance in the task of 3D instance segmentation on ScanNet and S3DIS datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源