论文标题
在$ z_2 $的阿贝利亚扩展的准二元结构上
On the quasitriangular structures of abelian extensions of $Z_2$
论文作者
论文摘要
本文的目的是在Abelian $ g $的Abelian Extensions构建的一类半hopf代数上研究quasitriangular结构。我们证明其中只有两种形式。使用此类描述以及其他一些技术,我们获得了所有Hopf代数上所有通用$ \ Mathcal {R} $ - 矩阵的完整列表。
The aim of this paper is to study quasitriangular structures on a class of semisimple Hopf algebras constructed through abelian extensions of $Z_2$ for an abelian group $G$. We prove that there are only two forms of them. Using such description together with some other techniques, we get a complete list of all universal $\mathcal{R}$-matrices on some Hopf algebras.