论文标题

将增强的对抗学习纳入自回归图像生成

Incorporating Reinforced Adversarial Learning in Autoregressive Image Generation

论文作者

Ak, Kenan E., Xu, Ning, Lin, Zhe, Wang, Yilin

论文摘要

自回归模型最近在量化量化变异自动编码器(VQ-VAE)的帮助下,取得了可比的结果与最先进的生成对抗网络(GAN)。但是,自回归模型有几个局限性,例如暴露偏见及其训练目标并不能保证视觉保真度。为了解决这些限制,我们建议根据自回旋模型的策略梯度优化使用加强对抗学习(RAL)。通过应用RAL,我们可以启用类似的培训和测试过程,以解决暴露偏见问题。此外,视觉保真度已被其强大的对应物启发的对抗性损失进一步优化:gans。由于自回归模型的采样速度缓慢,我们建议将部分生成用于更快的训练。 RAL还赋予了VQ-VAE框架不同模块之间的合作。据我们所知,提出的方法首先是在自回归模型中以形象生成的方式实现对抗性学习。关于合成和现实世界数据集的实验显示了对MLE训练的模型的改进。所提出的方法改善了负模样(NLL)和FréchetInception距离(FID),这表明视觉质量和多样性方面有所改善。所提出的方法以64美元的$ 64图像分辨率在Celeba上实现了最新的结果,显示了大规模图像生成的希望。

Autoregressive models recently achieved comparable results versus state-of-the-art Generative Adversarial Networks (GANs) with the help of Vector Quantized Variational AutoEncoders (VQ-VAE). However, autoregressive models have several limitations such as exposure bias and their training objective does not guarantee visual fidelity. To address these limitations, we propose to use Reinforced Adversarial Learning (RAL) based on policy gradient optimization for autoregressive models. By applying RAL, we enable a similar process for training and testing to address the exposure bias issue. In addition, visual fidelity has been further optimized with adversarial loss inspired by their strong counterparts: GANs. Due to the slow sampling speed of autoregressive models, we propose to use partial generation for faster training. RAL also empowers the collaboration between different modules of the VQ-VAE framework. To our best knowledge, the proposed method is first to enable adversarial learning in autoregressive models for image generation. Experiments on synthetic and real-world datasets show improvements over the MLE trained models. The proposed method improves both negative log-likelihood (NLL) and Fréchet Inception Distance (FID), which indicates improvements in terms of visual quality and diversity. The proposed method achieves state-of-the-art results on Celeba for 64 $\times$ 64 image resolution, showing promise for large scale image generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源