论文标题

关于Cubespace纤维的结构理论

On the structure theory of cubespace fibrations

论文作者

Gutman, Yonatan, Liang, Bingbing

论文摘要

我们研究了Cubespases/Nilspaces类别中的纤维化。我们表明,有限度$ f \ colon x \ rightArrow y $的纤维纤维胶合体(尤其是nilspaces)因子是一个(可能可计划的)紧凑型阿伯利亚谎言组主体纤维捆的塔。如果连接了$ f $的结构组,则纤维是(均匀地)同构(从强大意义上)到尼尔曼群落的反度。此外,我们提供的条件下,$ f $的纤维作为子套件是同构的。我们引入了与任意作用组最小拓扑动力学系统之间的因子图相对于因子图的区域近端等效关系。我们证明,最小远端系统之间的任何因素图都是一种振动,并得出结论,如果这样的地图是有限程度的,那么它是(可能可计划的)Abelian Lie Compact compact扩展的(可能可计划的)塔,从而在此环境中实现了Furstenberg's和Bronstein-ellis结构理论的改进。

We study fibrations in the category of cubespaces/nilspaces. We show that a fibration of finite degree $f \colon X\rightarrow Y$ between compact ergodic gluing cubespaces (in particular nilspaces) factors as a (possibly countable) tower of compact abelian Lie group principal fiber bundles over $Y$. If the structure groups of $f$ are connected then the fibers are (uniformly) isomorphic (in a strong sense) to an inverse limit of nilmanifolds. In addition we give conditions under which the fibers of $f$ are isomorphic as subcubespaces. We introduce regionally proximal equivalence relations relative to factor maps between minimal topological dynamical systems for an arbitrary acting group. We prove that any factor map between minimal distal systems is a fibration and conclude that if such a map is of finite degree then it factors as a (possibly countable) tower of principal abelian Lie compact group extensions, thus achieving a refinement of both the Furstenberg's and the Bronstein-Ellis structure theorems in this setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源