论文标题

删除单个边缘后,网络渗透性根据二次功率定律而变化

Network permeability changes according to a quadratic power law upon removal of a single edge

论文作者

Lange, S., Friedrich, B. M.

论文摘要

我们报告了降低统计上均质空间网络中网络渗透性的经验性定律,该网络删除了单个边缘。我们表征了从肝组织中的丛状微血管正弦网络以及造成二维和三维常规晶格的这种功率定律。我们通过绘制满足Darcy定律在小规模的电阻网络上的任意空间网络来为观察到的权力定律提供启发式论点。

We report an empirical power law for the reduction of network permeability in statistically homogeneous spatial networks upon removal of a single edge. We characterize this power law for plexus-like microvascular sinusoidal networks from liver tissue, as well as perturbed two- and three-dimensional regular lattices. We provide a heuristic argument for the observed power law by mapping arbitrary spatial networks that satisfies Darcy's law on an small-scale resistor network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源