论文标题
拓扑混合子班的千古化准不变措施是同构与伯努利偏移
Ergodic quasi-invariant measures on topologically mixing subshifts are isomorphic to Bernoulli shifts
论文作者
论文摘要
我们证明,在有限数量的坐标数量的排列下,拓扑混合子换档上的移位段落度量与伯努利移位是同构的。我们还证明,吉布斯在拓扑混合有限类型的子迁移时是准不变的。
We prove that a shift ergodic measure on a topologically mixing sub-shift is isomorphic to a Bernoulli shift whenever it is quasi invariant under permutations of finite number of coordinates. We prove also that Gibbs measures on topologically mixing subshift of finite type are quasi invariant.