论文标题
Lyapunov的半线指数
Lyapunov exponents of the half-line SHE
论文作者
论文摘要
我们考虑使用Robin边界参数$ a = - \ frac {1} {2} $的半行随机热方程(SHA)。在狭窄的楔形初始条件下,我们计算了她的半行她的每一个正(包括非全能)Lyapunov指数。 As a consequence, we prove a large deviation principle for the upper tail of the half-line KPZ equation under Neumann boundary parameter $A = -\frac{1}{2}$ with rate function $Φ_+^{\text{hf}} (s) = \frac{2}{3} s^{\frac{3}{2}}$.这证实了[Krajenbrink和Le Doussal 2018]和[Meerson,Vilenkin 2018]对半行KPZ方程的上尾指数的预测。
We consider the half-line stochastic heat equation (SHE) with Robin boundary parameter $A = -\frac{1}{2}$. Under narrow wedge initial condition, we compute every positive (including non-integer) Lyapunov exponents of the half-line SHE. As a consequence, we prove a large deviation principle for the upper tail of the half-line KPZ equation under Neumann boundary parameter $A = -\frac{1}{2}$ with rate function $Φ_+^{\text{hf}} (s) = \frac{2}{3} s^{\frac{3}{2}}$. This confirms the prediction of [Krajenbrink and Le Doussal 2018] and [Meerson, Vilenkin 2018] for the upper tail exponent of the half-line KPZ equation.