论文标题
保留视觉大满贯的隐私
Privacy Preserving Visual SLAM
论文作者
论文摘要
这项研究提出了一个保存隐私的视觉大满贯框架,用于估计相机姿势并实时使用混合线和点云进行捆绑调整。先前的研究提出了拟议的定位方法,以使用线路云图进行单个图像或重建点云估算摄像头姿势。这些方法通过将点云转换为线云,为反转攻击提供了场景隐私保护,该云从点云重建了场景图像。但是,它们不直接适用于视频序列,因为它们无法解决计算效率。这是解决相机姿势并实时使用混合线和点云执行捆绑调整的关键问题。此外,由于无法从客户端视频重建的点云优化服务器的线路云图的方法,因为图像坐标上的任何观察点都无法防止反转攻击,即3D线的可逆性。合成和真实数据的实验结果表明,我们的Visual SLAM框架使用线路云地图实现了预期的隐私保护形成和实时性能。
This study proposes a privacy-preserving Visual SLAM framework for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Previous studies have proposed localization methods to estimate a camera pose using a line-cloud map for a single image or a reconstructed point cloud. These methods offer a scene privacy protection against the inversion attacks by converting a point cloud to a line cloud, which reconstruct the scene images from the point cloud. However, they are not directly applicable to a video sequence because they do not address computational efficiency. This is a critical issue to solve for estimating camera poses and performing bundle adjustment with mixed line and point clouds in real time. Moreover, there has been no study on a method to optimize a line-cloud map of a server with a point cloud reconstructed from a client video because any observation points on the image coordinates are not available to prevent the inversion attacks, namely the reversibility of the 3D lines. The experimental results with synthetic and real data show that our Visual SLAM framework achieves the intended privacy-preserving formation and real-time performance using a line-cloud map.