论文标题
开放式费米量子物质的对称类别
Symmetry classes of open fermionic quantum matter
论文作者
论文摘要
我们提出了在热平衡中和外出的费米对物质的完全对称分类。我们的方法始于第一原理,即费米式空间中的十个不同类别的线性和反线状态变换,以及通过动力学方程的不变性属性定义的密度矩阵的对称性。然后,分类的对象是在通常不可逆和相互作用的动态方程中具有可逆动力学,耗散和波动的发生器。平衡的对称性和平衡动力学之间的尖锐区别是源于这两种情况下“时间”所起的不同作用:在统一量子力学中以及在“微可逆”热平衡中,抗线性变换构成了抗线性变换,抗线性变换与时间逆转的时间定义对称性相称的时间逆转时间逆转。然而,从平衡中,时间的反转变得毫无意义,而fock空间中的抗线性转化仍然具有物理意义,因此必须在自主权中考虑。这种二分法的实际结果是在非平衡量子动力学中对抗线性对称性(在十个基本类别中的六个)的新颖实现,这与既定的热平衡规则根本不同。在很大程度上,动态发电机因此对称性分类确定了任意相互作用系统的稳态非平衡分布。为了说明这一原理,我们考虑了在相互作用的晶格费米子系统中对称对称性受保护的拓扑阶段的固定。更普遍地,我们认为以高斯州为代表的实际上重要的平均场相互作用系统。该类自然用非热矩阵的语言描述,这使我们能够与文献中的先前分类方案进行比较。
We present a full symmetry classification of fermion matter in and out of thermal equilibrium. Our approach starts from first principles, the ten different classes of linear and anti-linear state transformations in fermionic Fock spaces, and symmetries defined via invariance properties of the dynamical equation for the density matrix. The object of classification are then the generators of reversible dynamics, dissipation and fluctuations featuring in the generally irreversible and interacting dynamical equations. A sharp distinction between the symmetries of equilibrium and out of equilibrium dynamics, respectively, arises from the different role played by `time' in these two cases: In unitary quantum mechanics as well as in `micro-reversible' thermal equilibrium, anti-linear transformations combined with an inversion of time define time reversal symmetry. However, out of equilibrium an inversion of time becomes meaningless, while anti--linear transformations in Fock space remain physically significant, and hence must be considered in autonomy. The practical consequence of this dichotomy is a novel realization of antilinear symmetries (six out of the ten fundamental classes) in non-equilibrium quantum dynamics that is fundamentally different from the established rules of thermal equilibrium. At large times, the dynamical generators thus symmetry classified determine the steady state non-equilibrium distributions for arbitrary interacting systems. To illustrate this principle, we consider the fixation of a symmetry protected topological phase in a system of interacting lattice fermions. More generally, we consider the practically important class of mean field interacting systems, represented by Gaussian states. This class is naturally described in the language of non-Hermitian matrices, which allows us to compare to previous classification schemes in the literature.