论文标题

外部机器人或传感器协助其他机器人的最佳观点

Best Viewpoints for External Robots or Sensors Assisting Other Robots

论文作者

Dufek, Jan, Xiao, Xuesu, Murphy, Robin R.

论文摘要

这项工作创建了执行任务的机器人不同外部观点的价值的模型。该实践的当前状态是使用遥控助理机器人来提供主机器人执行的任务的视图;但是,观点的选择是临时的,并不总是会提高性能。这项研究采用了一种心理运动方法来开发使用Gibsonian Provress的外部观点相对质量的模型。在这种方法中,根据人类操作员的心理动作行为进行评分,并将其聚集在具有等效价值的观点的多种状态中。 31位专家机器人操作员的研究中,使用基于计算机的两个机器人的模拟器,对31位专家机器人操作员进行了40个观点的值。具有相似值的相邻观点使用聚集层次群集聚集到排名的歧管中。结果表明,通过确认存在统计学上显着不同的观点值的流形,观点值在统计上显着取决于负担,而观点值在统计上显着,并且观点值与机器人无关。此外,每种负担能力的最佳多种流形可提供统计学上的显着改善,其性能的较大D效应大小(1.1-2.3)(将时间提高了14%-59%,并将错误降低了87%-100%),并且在最差的歧视方面的性能变化改善了。该模型将对助手机器人的最佳观点和路径计划进行自主选择。

This work creates a model of the value of different external viewpoints of a robot performing tasks. The current state of the practice is to use a teleoperated assistant robot to provide a view of a task being performed by a primary robot; however, the choice of viewpoints is ad hoc and does not always lead to improved performance. This research applies a psychomotor approach to develop a model of the relative quality of external viewpoints using Gibsonian affordances. In this approach, viewpoints for the affordances are rated based on the psychomotor behavior of human operators and clustered into manifolds of viewpoints with the equivalent value. The value of 30 viewpoints is quantified in a study with 31 expert robot operators for 4 affordances (Reachability, Passability, Manipulability, and Traversability) using a computer-based simulator of two robots. The adjacent viewpoints with similar values are clustered into ranked manifolds using agglomerative hierarchical clustering. The results show the validity of the affordance-based approach by confirming that there are manifolds of statistically significantly different viewpoint values, viewpoint values are statistically significantly dependent on the affordances, and viewpoint values are independent of a robot. Furthermore, the best manifold for each affordance provides a statistically significant improvement with a large Cohen's d effect size (1.1-2.3) in performance (improving time by 14%-59% and reducing errors by 87%-100%) and improvement in performance variation over the worst manifold. This model will enable autonomous selection of the best possible viewpoint and path planning for the assistant robot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源