论文标题

GAN生成图像的检测,归因和定位

Detection, Attribution and Localization of GAN Generated Images

论文作者

Goebel, Michael, Nataraj, Lakshmanan, Nanjundaswamy, Tejaswi, Mohammed, Tajuddin Manhar, Chandrasekaran, Shivkumar, Manjunath, B. S.

论文摘要

生成对抗网络(GAN)的最新进展导致创建了现实的数字图像,这对人类或计算机的检测构成了重大挑战。 gan被用于多种任务,从修改图像的小属性(Stargan [14]),在图像对之间传输属性(Cyclegan [91]),以及生成全新的图像(Progan [36],stylegan [37],Spade/spade/gaugan [64])。在本文中,我们提出了一种新颖的方法来检测,属性和定位GAN生成的图像,将图像特征与深度学习方法结合在一起。对于每个图像,共同发生矩阵都是在不同方向(水平,垂直和对角线)的RGB通道的邻域像素上计算的。然后,对这些功能进行了深度学习网络的培训,以检测,属性和本地化这些GAN生成/操纵的图像。对我们在5个GAN数据集上进行的方法进行了大规模评估,其中包括超过276万张图像(Progan,Stargan,Cyclean,Stylegan和Spade/Gaugan),在检测GAN生成的图像方面显示出令人鼓舞的结果。

Recent advances in Generative Adversarial Networks (GANs) have led to the creation of realistic-looking digital images that pose a major challenge to their detection by humans or computers. GANs are used in a wide range of tasks, from modifying small attributes of an image (StarGAN [14]), transferring attributes between image pairs (CycleGAN [91]), as well as generating entirely new images (ProGAN [36], StyleGAN [37], SPADE/GauGAN [64]). In this paper, we propose a novel approach to detect, attribute and localize GAN generated images that combines image features with deep learning methods. For every image, co-occurrence matrices are computed on neighborhood pixels of RGB channels in different directions (horizontal, vertical and diagonal). A deep learning network is then trained on these features to detect, attribute and localize these GAN generated/manipulated images. A large scale evaluation of our approach on 5 GAN datasets comprising over 2.76 million images (ProGAN, StarGAN, CycleGAN, StyleGAN and SPADE/GauGAN) shows promising results in detecting GAN generated images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源