论文标题

McKay图形用于交替组和古典组

McKay graphs for alternating and classical groups

论文作者

Liebeck, M. W., Shalev, A., Tiep, Pham Huu

论文摘要

令$ g $为有限的群体,而$α$是$ g $的非平凡特征。 McKay Graph $ \ MATHCAL {M}(g,α)$具有$ G $的不可约字符,如果$χ_2$是$αχ_1$的组成部分。我们研究有限简单组$ g $的麦凯图的直径。对于交替组,我们证明了[lst]中的一个猜想:有一个绝对常数的$ c $,以至于$ \ hbox {diam} \,{\ Mathcal m}(g,g,α)\ le c \ le c \ frac {\ log | \ log | \ mathsf {a} _n} _n} _n |} $ y $ for -forred fon $ \ mathsf {a} _n $的of。同样,对于符合或正交类型的等级$ r $的班级组,我们在所有非平凡McKay图的直径上建立了线性上限$ CR $。

Let $G$ be a finite group, and $α$ a nontrivial character of $G$. The McKay graph $\mathcal{M}(G,α)$ has the irreducible characters of $G$ as vertices, with an edge from $χ_1$ to $χ_2$ if $χ_2$ is a constituent of $αχ_1$. We study the diameters of McKay graphs for finite simple groups $G$. For alternating groups, we prove a conjecture made in [LST]: there is an absolute constant $C$ such that $\hbox{diam}\,{\mathcal M}(G,α) \le C\frac{\log |\mathsf{A}_n|}{\log α(1)}$ for all nontrivial irreducible characters $α$ of $\mathsf{A}_n$. Also for classsical groups of symplectic or orthogonal type of rank $r$, we establish a linear upper bound $Cr$ on the diameters of all nontrivial McKay graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源