论文标题
关于伯尔问题的关键价值
On the critical values of Burr's problem
论文作者
论文摘要
让$ a $是一系列正整数,$ p(a)$是所有整数的集合,这是$ a $的不同条款的有限总和。对于给定的积极整数$ u \ in \ {4,7,8 \} \ cup \ {u:u \ ge11 \} $和$ v \ ge 3u+5 $我们知道,$+u+v+1 $是$ b_3 $的关键价值是$ b_3 $的关键价值,因此存在$ a $ a $ a $ a $ a $ a $ a a $ a $ p(n $ p(b), \ {u <v <b_3 <\ cdots \} $。在本文中,我们获得了$ b_k $的临界值。
Let $A$ be a sequence of positive integers and $P(A)$ be the set of all integers which are the finite sum of distinct terms of $A$. For given positive integers $u\in\{4,7,8\}\cup\{u:u\ge11\}$ and $v\ge 3u+5$ we know that $u+v+1$ is the critical value of $b_3$ such that there exists a sequence $A$ of positive integers for which $P(A)=\mathbb{N}\backslash \{u<v<b_3<\cdots\}$. In this paper, we obtain the critical value of $b_k$.