论文标题

从依赖数据中学习结构化的潜在因素:从信息理论角度来看的生成模型框架

Learning Structured Latent Factors from Dependent Data:A Generative Model Framework from Information-Theoretic Perspective

论文作者

Zhang, Ruixiang, Koyama, Masanori, Ishiguro, Katsuhiko

论文摘要

具有所需结构属性的多元数据的学习可控和可推广的表示仍然是机器学习的基本问题。在本文中,我们提出了一个新型框架,用于学习潜在空间中具有各种基础结构的生成模型。我们以蒙版变量的形式表示感应性偏差,以模拟图形模型中的依赖关系结构,并扩展了多元信息瓶颈的理论以实施它。我们的模型提供了一种有原则的方法来学习一组语义上有意义的潜在因素,这些因素反映了各种期望的结构,例如捕获相关性或编码不变性,同时还提供了灵活性以自动从数据中估算依赖关系结构。我们表明,我们的框架统一了许多现有的生成模型,可以应用于多种任务,包括多模式数据建模,算法公平和不变风险最小化。

Learning controllable and generalizable representation of multivariate data with desired structural properties remains a fundamental problem in machine learning. In this paper, we present a novel framework for learning generative models with various underlying structures in the latent space. We represent the inductive bias in the form of mask variables to model the dependency structure in the graphical model and extend the theory of multivariate information bottleneck to enforce it. Our model provides a principled approach to learn a set of semantically meaningful latent factors that reflect various types of desired structures like capturing correlation or encoding invariance, while also offering the flexibility to automatically estimate the dependency structure from data. We show that our framework unifies many existing generative models and can be applied to a variety of tasks including multi-modal data modeling, algorithmic fairness, and invariant risk minimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源