论文标题

岩浆:通过多任务高斯流程的推理和预测

MAGMA: Inference and Prediction with Multi-Task Gaussian Processes

论文作者

Leroy, Arthur, Latouche, Pierre, Guedj, Benjamin, Gey, Servane

论文摘要

提出了一个新颖的多任务高斯流程(GP)框架,该框架是通过使用一个共同的均值过程来共享任务的信息。特别是,我们调查了时间序列预测的问题,目的是改善多步预测。共同的平均过程被定义为高成本分布的GP。因此,得出EM算法,用于处理高参数优化和高成本计算。与文献中以前的方法不同,该模型充分说明了不确定性,并且可以通过在统一的GP框架中对平均过程进行建模,同时可以处理观测的不规则网格。提供了预测性分析方程,通过相关的先验均值整合了跨任务共享的信息。这种方法大大提高了预测性能,甚至远离观察结果,并且与传统的多任务GP模型相比,计算复杂性可能会大大降低。我们的整体算法称为\ textsc {magma}(代表具有共同均值的多任务高斯过程)。在各种模拟方案和实际数据集中评估了平均过程估计,预测性能和与替代方案的比较的质量。

A novel multi-task Gaussian process (GP) framework is proposed, by using a common mean process for sharing information across tasks. In particular, we investigate the problem of time series forecasting, with the objective to improve multiple-step-ahead predictions. The common mean process is defined as a GP for which the hyper-posterior distribution is tractable. Therefore an EM algorithm is derived for handling both hyper-parameters optimisation and hyper-posterior computation. Unlike previous approaches in the literature, the model fully accounts for uncertainty and can handle irregular grids of observations while maintaining explicit formulations, by modelling the mean process in a unified GP framework. Predictive analytical equations are provided, integrating information shared across tasks through a relevant prior mean. This approach greatly improves the predictive performances, even far from observations, and may reduce significantly the computational complexity compared to traditional multi-task GP models. Our overall algorithm is called \textsc{Magma} (standing for Multi tAsk Gaussian processes with common MeAn). The quality of the mean process estimation, predictive performances, and comparisons to alternatives are assessed in various simulated scenarios and on real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源