论文标题
跨波动界面的流体动力学
Hydrodynamics Across a Fluctuating Interface
论文作者
论文摘要
了解液体的波纹和舞蹈表面内发生的事情仍然是流体动力学的巨大挑战之一。使用分子动力学(MD),我们可以分开界面结构并了解表面张力。在这项工作中,我们使用与表面移动的控制量得出了液体蒸气界面的流体动力学的精确机械制定。该数学框架在表面上任何一点都提供了流体动力通量的局部定义。这些不仅由作用于整个表面的分子的通量和分子间相互作用表示,还代表了表面本身的瞬时局部曲率和运动。通过在运动方程式中明确包含表面动力学,我们证明了与表面正常的动力压力和构型压力之间的确切平衡。流体动力分析对概率分布函数没有任何假设,因此对于远离热力学平衡的任何系统都是有效的。所提出的方程为研究时间不断发展的界面现象(例如气泡成核,液滴动力学和液体蒸气不稳定性)提供了理论基础。
Understanding what happens inside the rippling and dancing surface of a liquid remains one of the great challenges of fluid dynamics. Using molecular dynamics (MD) we can pick apart the interface structure and understand surface tension. In this work we derive an exact mechanical formulation of hydrodynamics for a liquid-vapour interface using a control volume which moves with the surface. This mathematical framework provides the local definition of hydrodynamic fluxes at any point on the surface. These are represented not only by the flux of molecules and intermolecular interactions acting across the surface, but also as a result of the instantaneous local curvature and movement of the surface itself. By explicitly including the surface dynamics in the equations of motion, we demonstrate an exact balance between kinetic and configurational pressure normal to the surface. The hydrodynamic analysis makes no assumptions regarding the probability distribution function, so is valid for any system arbitrarily far from thermodynamic equilibrium. The presented equations provide a theoretical basis for the study of time-evolving interface phenomena such as bubble nucleation, droplet dynamics and liquid-vapour instabilities.