论文标题

学会匹配域适应的分布

Learning to Match Distributions for Domain Adaptation

论文作者

Yu, Chaohui, Wang, Jindong, Liu, Chang, Qin, Tao, Xu, Renjun, Feng, Wenjie, Chen, Yiqiang, Liu, Tie-Yan

论文摘要

当培训和测试数据来自不同的分布时,需要适应域以减少数据集偏置以提高模型的概括能力。由于很难直接匹配跨域关节分布,因此现有方法倾向于使用预定义的距离(例如MMD和基于对抗性的差异)降低边际或条件分布差异。但是,确定哪种方法适用于给定应用程序仍然具有挑战性,因为它们是用某些先验或偏见构建的。因此,他们可能无法揭示可转移特征和关节分布之间的基本关系。本文提议学习匹配(L2M),以自动学习跨域分布匹配,而无需依靠手工制作的先验匹配的损失。相反,L2M通过使用元网络以数据驱动方式学习分布匹配损失来减少电感偏差。 L2M是一个统一任务独立且人为设计的匹配功能的一般框架。我们通过自我监督的标签传播设计了一种新颖的优化算法,以实现这一具有挑战性的目标。公共数据集上的实验证实了L2M优于SOTA方法。此外,我们将L2M应用于肺炎转移到Covid-19胸部X射线图像,其性能出色。 L2M也可以在其他分布匹配的应用中扩展,我们在试验实验中显示L2M生成更真实和更清晰的MNIST样品。

When the training and test data are from different distributions, domain adaptation is needed to reduce dataset bias to improve the model's generalization ability. Since it is difficult to directly match the cross-domain joint distributions, existing methods tend to reduce the marginal or conditional distribution divergence using predefined distances such as MMD and adversarial-based discrepancies. However, it remains challenging to determine which method is suitable for a given application since they are built with certain priors or bias. Thus they may fail to uncover the underlying relationship between transferable features and joint distributions. This paper proposes Learning to Match (L2M) to automatically learn the cross-domain distribution matching without relying on hand-crafted priors on the matching loss. Instead, L2M reduces the inductive bias by using a meta-network to learn the distribution matching loss in a data-driven way. L2M is a general framework that unifies task-independent and human-designed matching features. We design a novel optimization algorithm for this challenging objective with self-supervised label propagation. Experiments on public datasets substantiate the superiority of L2M over SOTA methods. Moreover, we apply L2M to transfer from pneumonia to COVID-19 chest X-ray images with remarkable performance. L2M can also be extended in other distribution matching applications where we show in a trial experiment that L2M generates more realistic and sharper MNIST samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源