论文标题

IITK在Semeval-2020任务10:用于重点选择的变压器

IITK at SemEval-2020 Task 10: Transformers for Emphasis Selection

论文作者

Singhal, Vipul, Dhull, Sahil, Agarwal, Rishabh, Modi, Ashutosh

论文摘要

本文介绍了为解决Semeval-2020任务10中提出的研究问题提出的系统:视觉媒体中的书面文本的重点选择。我们提出了一个端到端模型,该模型以输入文本为输入,并与每个单词相对应,给出了要强调的单词的概率。我们的结果表明,基于变压器的模型在此任务中特别有效。我们以0.810的成绩获得了最佳的匹配分数(在第2.2节中描述),并在排行榜上排名第三。

This paper describes the system proposed for addressing the research problem posed in Task 10 of SemEval-2020: Emphasis Selection For Written Text in Visual Media. We propose an end-to-end model that takes as input the text and corresponding to each word gives the probability of the word to be emphasized. Our results show that transformer-based models are particularly effective in this task. We achieved the best Matchm score (described in section 2.2) of 0.810 and were ranked third on the leaderboard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源