论文标题

石榴石++:通过曲率损失改善快速准确的静态3D布

GarNet++: Improving Fast and Accurate Static3D Cloth Draping by Curvature Loss

论文作者

Gundogdu, Erhan, Constantin, Victor, Parashar, Shaifali, Seifoddini, Amrollah, Dang, Minh, Salzmann, Mathieu, Fua, Pascal

论文摘要

在本文中,我们解决了虚拟人体上静态3D布的问题。我们介绍了一个两流的深网模型,该模型通过从身体和服装形状中提取特征在虚拟3D主体上产生模板布的视觉覆盖。我们的网络学会了模仿基于物理的模拟(PBS)方法,同时需要少两个数量级的计算时间。为了训练网络,我们介绍了受PBS启发的损失条款,以产生合理的结果并使模型碰撞感知。为了增加披着衣服的细节,我们引入了两个损失功能,以惩罚预测布和PBS的曲率之间的差异。特别是,我们研究平均曲率正常和新颖的细节损失的影响既有定性和定量。我们的新曲率损失计算了3D点的局部协方差矩阵,并比较了预测和PBS的瑞利商。这会导致更多细节,同时对3D三角形网格中的平均曲率正常向量的损失表现出色或相当地进行。我们在四种服装类型上验证了各种身体形状和姿势的框架。最后,我们针对最近提出的数据驱动方法实现了卓越的性能。

In this paper, we tackle the problem of static 3D cloth draping on virtual human bodies. We introduce a two-stream deep network model that produces a visually plausible draping of a template cloth on virtual 3D bodies by extracting features from both the body and garment shapes. Our network learns to mimic a Physics-Based Simulation (PBS) method while requiring two orders of magnitude less computation time. To train the network, we introduce loss terms inspired by PBS to produce plausible results and make the model collision-aware. To increase the details of the draped garment, we introduce two loss functions that penalize the difference between the curvature of the predicted cloth and PBS. Particularly, we study the impact of mean curvature normal and a novel detail-preserving loss both qualitatively and quantitatively. Our new curvature loss computes the local covariance matrices of the 3D points, and compares the Rayleigh quotients of the prediction and PBS. This leads to more details while performing favorably or comparably against the loss that considers mean curvature normal vectors in the 3D triangulated meshes. We validate our framework on four garment types for various body shapes and poses. Finally, we achieve superior performance against a recently proposed data-driven method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源