论文标题

GPU上的缩放多面体神经网络验证

Scaling Polyhedral Neural Network Verification on GPUs

论文作者

Müller, Christoph, Serre, François, Singh, Gagandeep, Püschel, Markus, Vechev, Martin

论文摘要

证明神经网络针对对抗性攻击的鲁棒性对于它们在自主驾驶和医疗诊断等安全至关重要系统中的可靠采用至关重要。不幸的是,最先进的验证者要么不扩展到更大的网络,要么过于不精确,无法证明鲁棒性,从而限制了其实际采用。在这项工作中,我们引入了Gpupoly,这是一种可扩展的验证者,可以证明比以前可能更大的深神经网络的鲁棒性。 Gpupoly背后的关键技术见解是设计用于GPU上神经网络验证的定制,声音多面体算法。我们的算法利用了基础验证任务的可用GPU并行性和固有的稀疏性。 Gpupoly量表到大型网络:例如,它可以证明1M神经元,34层深残留网络的鲁棒性大约34.5毫秒。我们认为Gpupoly是朝着实际验证现实世界神经网络的实践验证的有前途的一步。

Certifying the robustness of neural networks against adversarial attacks is essential to their reliable adoption in safety-critical systems such as autonomous driving and medical diagnosis. Unfortunately, state-of-the-art verifiers either do not scale to bigger networks or are too imprecise to prove robustness, limiting their practical adoption. In this work, we introduce GPUPoly, a scalable verifier that can prove the robustness of significantly larger deep neural networks than previously possible. The key technical insight behind GPUPoly is the design of custom, sound polyhedra algorithms for neural network verification on a GPU. Our algorithms leverage the available GPU parallelism and inherent sparsity of the underlying verification task. GPUPoly scales to large networks: for example, it can prove the robustness of a 1M neuron, 34-layer deep residual network in approximately 34.5 ms. We believe GPUPoly is a promising step towards practical verification of real-world neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源