论文标题
在间隔地图的后退吸引子上
On backward attractors of interval maps
论文作者
论文摘要
特殊$α$ - 限制套件($Sα$ - 限制套件)将$ x $的所有后轨道分支的所有累积点组合在一起,在不可变性地图下。关于它们的最重要问题是它们是否关闭。我们通过表明不需要关闭,我们挑战了$Sα$限制集作为间隔地图的向后吸引子。这反驳了Kolyada,Misiurewicz和Snoha的猜想。我们根据Xiong的吸引中心给出了标准,该中心完全表征了哪些间隔地图已关闭了所有$Sα$ limit设置,我们表明我们的标准在分段单调案例中得到了满足。我们应用了Blokh的电磁系统和基本$ω$ - 限制套件的模型,以解决Kolyada,Misiurewicz和Snoha与其中的拓扑特性相关的拓扑特性的四个额外猜想。例如,我们表明,$Sα$ - 限速图中的隔离点始终是周期性的,非分数组件是一个或两个及两个及两个间隔的及两个及两个及两个频率的循环,其余的$Sα$ limit集合也没有任何地方密集。此外,我们表明该间隔中的$sα$限制集始终是$f_σ$和$g_δ$。最后,由于不必关闭$Sα$限制套件,因此我们提出了一个新的概念$β$ limit套件,以充当后退吸引者。 $ x $ $ x $的$β$限制集是$ x $的所有落后轨道分支汇聚的最小封闭套件,并且与$sα$ limit套件的关闭相吻合。在论文的结尾,我们提出了有关向后吸引子的几个新问题。
Special $α$-limit sets ($sα$-limit sets) combine together all accumulation points of all backward orbit branches of a point $x$ under a noninvertible map. The most important question about them is whether or not they are closed. We challenge the notion of $sα$-limit sets as backward attractors for interval maps by showing that they need not be closed. This disproves a conjecture by Kolyada, Misiurewicz, and Snoha. We give a criterion in terms of Xiong's attracting center that completely characterizes which interval maps have all $sα$-limit sets closed, and we show that our criterion is satisfied in the piecewise monotone case. We apply Blokh's models of solenoidal and basic $ω$-limit sets to solve four additional conjectures by Kolyada, Misiurewicz, and Snoha relating topological properties of $sα$-limit sets to the dynamics within them. For example, we show that the isolated points in a $sα$-limit set of an interval map are always periodic, the non-degenerate components are the union of one or two transitive cycles of intervals, and the rest of the $sα$-limit set is nowhere dense. Moreover, we show that $sα$-limit sets in the interval are always both $F_σ$ and $G_δ$. Finally, since $sα$-limit sets need not be closed, we propose a new notion of $β$-limit sets to serve as backward attractors. The $β$-limit set of $x$ is the smallest closed set to which all backward orbit branches of $x$ converge, and it coincides with the closure of the $sα$-limit set. At the end of the paper we suggest several new problems about backward attractors.