论文标题
边缘的无线图像检索
Wireless Image Retrieval at the Edge
论文作者
论文摘要
我们在无线边缘研究图像检索问题,边缘设备捕获图像,然后将图像从边缘服务器检索相似的图像。这些可以是同一个人的图像,也可以是在不同时间和位置从其他摄像机中取出的车辆。我们的目标是最大程度地提高无线链接下电力和带宽约束的检索任务的准确性。由于基础应用程序的严格延迟约束,因此无法以足够的质量发送整个图像。我们分别提出了基于数字和模拟通信的两个替代方案。在数字方法中,我们首先提出了一个深神经网络(DNN)辅助检索导向的图像压缩方案,其输出位序列是使用传统的通道代码在通道上传输的。在模拟关节源和通道编码(JSCC)方法中,特征向量直接映射到通道符号中。我们在不同的通道条件下(包括静态和褪色通道)评估了基于图像的重新识别(RE-ID)任务的两个方案。我们表明,JSCC方案大大提高了端到端的准确性,加快了编码过程,并在通道条件下提供优雅的降级。通过对不同数据集和渠道条件以及消融研究进行大量模拟来评估所提出的体系结构。
We study the image retrieval problem at the wireless edge, where an edge device captures an image, which is then used to retrieve similar images from an edge server. These can be images of the same person or a vehicle taken from other cameras at different times and locations. Our goal is to maximize the accuracy of the retrieval task under power and bandwidth constraints over the wireless link. Due to the stringent delay constraint of the underlying application, sending the whole image at a sufficient quality is not possible. We propose two alternative schemes based on digital and analog communications, respectively. In the digital approach, we first propose a deep neural network (DNN) aided retrieval-oriented image compression scheme, whose output bit sequence is transmitted over the channel using conventional channel codes. In the analog joint source and channel coding (JSCC) approach, the feature vectors are directly mapped into channel symbols. We evaluate both schemes on image based re-identification (re-ID) tasks under different channel conditions, including both static and fading channels. We show that the JSCC scheme significantly increases the end-to-end accuracy, speeds up the encoding process, and provides graceful degradation with channel conditions. The proposed architecture is evaluated through extensive simulations on different datasets and channel conditions, as well as through ablation studies.